Crystal structures of human bifunctional enzyme aminoimidazole-4-carboxamide ribonucleotide transformylase/IMP cyclohydrolase in complex with potent sulfonyl-containing antifolates.
نویسندگان
چکیده
Aminoimidazole-4-carboxamide ribonucleotide (AICAR) transformylase/IMP cyclohydrolase (ATIC) is a bifunctional enzyme with folate-dependent AICAR transformylase and IMP cyclohydrolase activities that catalyzes the last two steps of purine biosynthesis. The AICAR transformylase inhibitors BW1540 and BW2315 are sulfamido-bridged 5,8-dideazafolate analogs with remarkably potent K(i) values of 8 and 6 nm, respectively, compared with most other antifolates. Crystal structures of ATIC at 2.55 and 2.60 A with each inhibitor, in the presence of substrate AICAR, revealed that the sulfonyl groups dominate inhibitor binding and orientation through interaction with the proposed oxyanion hole. These agents then appear to mimic the anionic transition state and now implicate Asn(431') in the reaction mechanism along with previously identified key catalytic residues Lys(266) and His(267). Potent and selective inhibition of the AICAR transformylase active site, compared with other folate-dependent enzymes, should therefore be pursued by further design of sulfonyl-containing antifolates.
منابع مشابه
5-Aminoimidazole-4-carboxamide ribotide transformylase-IMP cyclohydrolase from human CCRF-CEM leukemia cells: purification, pH dependence, and inhibitors.
The bifunctional enzyme 5-aminoimidazole-4-carboxamide ribotide (AICAR) transformylase-IMP cyclohydrolase has been purified 780-fold to apparent homogeneity from human CCRF-CEM leukemia cells, completed with chromatography on Affi-Gel Blue followed by AICAR-Sepharose 4B. Using a sensitive radioassay, IMP cyclohydrolase has a Ks value for 5-formamidoimidazole-4-carboxamide ribotide (FAICAR) at p...
متن کاملHuman 5-aminoimidazole-4-carboxamide ribonucleotide transformylase/inosine 5'-monophosphate cyclohydrolase. A bifunctional protein requiring dimerization for transformylase activity but not for cyclohydrolase activity.
The bifunctional enzyme aminoimidazole carboxamide ribonucleotide transformylase/inosine monophosphate cyclohydrolase (ATIC) is responsible for catalysis of the last two steps in the de novo purine pathway. Gel filtration studies performed on human enzyme suggested that this enzyme is monomeric in solution. However, cross-linking studies performed on both yeast and avian ATIC indicated that thi...
متن کاملStructure-based design, synthesis, evaluation, and crystal structures of transition state analogue inhibitors of inosine monophosphate cyclohydrolase.
The inosine monophosphate cyclohydrolase (IMPCH) component (residues 1-199) of the bifunctional enzyme aminoimidazole-4-carboxamide ribonucleotide transformylase (AICAR Tfase, residues 200-593)/IMPCH (ATIC) catalyzes the final step in the de novo purine biosynthesis pathway that produces IMP. As a potential target for antineoplastic intervention, we designed IMPCH inhibitors, 1,5-dihydroimidazo...
متن کاملNucleotide sequence analysis of genes purH and purD involved in the de novo purine nucleotide biosynthesis of Escherichia coli.
5'-Phosphoribosylglycinamide synthetase (EC 6.3.4.13) and 5'-phosphoribosyl 5-aminoimidazole-4-carboxamide transformylase (EC 2.1.2.3) are enzymes involved in the de novo purine nucleotide synthesis and are encoded by purD and purH genes of Escherichia coli, respectively. A 3535-nucleotide sequence containing the purHD locus and the upstream region of the rrnE gene was determined. This sequence...
متن کاملThe transformylase enzymes of de novo purine bi osy n t h esis
Formyl transfer reactions play a key role in the construction of the purine heterocycle during de now purine biosynthesis. Formylation is catalyzed early in the pathway by the purN glycinamide ribonucleotide transformylase (GAR Transformylase, EC 2.1.2.2) in a tetrahydrofolate-dependent manner and also by the purT GAR transformylase in a tetrahydrofolate-independent manner in bacteria. Late in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 279 17 شماره
صفحات -
تاریخ انتشار 2004